Building Projects Against the A3200 C Library in Visual Studio:

Sample Projects and Code Snippets:

Using the A3200 C Library:

Frequently Asked Questions:

Will my C application work with a version of the A3200 software that is different than the version of the
A3200 C Library that I used to build my application?

What is the recommended approach for handling errors when using the A3200 C Library?
How do I edit controller parameters?

How do I read and write controller variables?

How do I read and write Modbus variables?

Is the A3200 C Library thread safe?

Which A3200 C Library functions are blocking?

How do I modify my A3200 configuration using the A3200 C Library?

I can’t find the command in the A3200 C Library. How do I execute a command that isn’t part of
the API?

How can I call an AeroBasic subroutine from within my .NET application?

I can’t find VELOCITY ON, PVT, or their equivalent functions in the A3200 C Library. How do I command a
series of moves with velocity profiling and/or precise timing in my C application?

What are some best practices when using the Program/Task Control Functions?
Can the A3200 C Library be used to control a Hexapod?

What steps are required to use a C application on a client PC to control a remote A3200 in a Remote
Server configuration?

How do I poll for diagnostics and status items through the A3200 C Library?

Troubleshooting Tips:
When I try to build my application, I am seeing linker errors:
When I try to build my application, I am seeing compiler errors:

When I try to run my application, I am seeing runtime errors that say that I am missing DLLs:

I followed all of the instructions in this setting and I am still having trouble compiling and running my
application:
Some A3200 C Library functions will error when passing certain values as arguments:

Changes to A3200 Configuration using the Configuration Functions are not taking effect when I connect to
the controller using the A3200Connect() function:

Sometimes A3200 C Library functions return incorrect values or intermittently fail:

Writing Custom CALLDLL Handling Functions with the A3200 C Library in Visual Studio:

A3200 C Library Getting Started Guide
Building Projects Against the A3200 C Library in Visual Studio:

1. The version of the library DLLs must be in sync with each other and with the version of the A3200
controller installed

General Securty Details Previous Versions

Property Value

Description
File description A325ys
Tvpe Application extension
File: wersion 6212
Product name A3200
Product version 6.02.001.0002

Copyright Copyright © 1997-2018 Aerotech, Inc. All...
Size 412 MB

Date modfied 3762018 5:06 AM

Language English (United States)

| ! A3200 Metion Composer (6.02,001) - Aerotech, Inc.

e The [InstallDir]\CLibrary\bin\ and [InstallDir]\CLibrary\bin64\ directories must be added to the PATH or
their contents must be copied and pasted into the Output Directory of any C application that uses the
A3200 C Library

e The linker must be setup to find the A3200 C Library (A3200C.lib and A3200C64.lib as Additional
Dependencies)

e The [InstallDir]\CLibrary\include\ directory must be added as an Additional Include Directory

Sample Projects and Code Snippets:

e There are multiple sample projects located in the Samples directory of the installation directory (e.qg.
C:\Program Files\Aerotech\A3200\Samples)
o These are also useful for determining the proper Visual Studio project properties
There are example usages of some of the functions in their A3200 Programming Help file topics
The FAQs and example application in this guide are a good starting point

Using the A3200 C Library:

Add the line “#include “"A3200.h"” to use the A3200 C Library
Unless indicated otherwise, the functions in the A3200 C Library are blocking (the next program line is
not executed until the current one completes)
o Library methods that are wrappers for AeroBasic commands have the same blocking behavior as
the AeroBasic command
e The A3200 C Library is not meant for real-time motion control and any commands issued through the
library will have a latency of anywhere from 5-10ms

e Commands that are executed from multiple threads must be synchronized using something like locks,
mutexes, semaphores, etc.

e A3200 C Library functions will return FALSE if an error occurs
o Call A3200GetLastError() to get more information on the error

Frequently Asked Questions:

1. Will my C application work with a version of the A3200 software that is different than the version of the
A3200 C Library that I used to build my application?

Small differences in version might mean that your application code is source-level compatible between the
different versions of the A3200 C Library, but users will still need to rebuild their application against
the version of the A3200 C Library that matches the A3200 controller version that they intend to
use with their application. Follow this procedure when updating C applications to function properly with a
different controller version:

I1.

I1I.

IV.

VI.

Check the release notes to see what has changed between versions of the A3200 C Library and if
upgrading a project from 2.x, please see the “Upgrading Programs From 2.x” topic in the A3200
Programming Help file, as well as any “Related Topics”

If there have been updates to a feature that was used in or application, update your source code
to use the correct syntax and to use the features of the controller properly

Copy all of the files in the intend target A3200 controller versions’ [InstallDir]\C\bin and
[InstallDir]\C\bin64 directories and paste them in the application’s Output Directory

Add the [InstallDir]\CLibrary\include\ directory as an Additional Include Directory

Add A3200C.lib and A3200C64.lib as Additional Dependencies in the Linker properties

Rebuild the application

2. What is the recommended approach for handling errors when using the A3200 C Library?

There is not one correct approach to handling errors that occur when using the A3200 C Library. Most all of
the functions in the A3200 C Library will return FALSE on error and the A3200GetLastError() or
A3200GetLastErrorString() function can be used to retrieve the last error that occured. The C applications in

the Samples directory setup an error printing function that is called when any of the A3200 C Library function
calls errors (cleanup code is also used and is shown below).

void PrintError();

int main(int argc, char **argv)

{

A3200Handle handle =

J

printf("Connecting to A3200. Initializing if necessary.\n");
if (!A3200Connect(&handle)) { PrintError(); goto cleanup; }

cleanup:
if(handle != NULL) {
if(!A3200MotionDisable(handle, TASKID Library, axisMask)) { PrintError(); }
if(!A3200Disconnect(handle)) { PrintError(); }
}

return 0;

}

void PrintError() {
CHAR data[1024];
A3200GetLastErrorString(data, 1024);
printf("Error : %s\n", data);

3. How do I edit controller parameters?
The Parameter Functions allow users to manipulate the active controller parameters as well as the
parameters in an A3200 parameter file. The controller will revert back to the parameter values in the active

parameter files’ on controller reset.

Edit parameters on the SMC:

if (!A3200ParameterSetValue(handle, PARAMETERID HomeOffset, AXISINDEX ©0, 75)) { PrintError(); goto cleanup; }

if (!A3200ParameterSetValueString(handle, PARAMETERID UserStringo, , "Hello World")) { PrintError(); goto cleanup; }

Open, manipulate, and save a parameter file:

A3200ParameterFile params g
CHAR paramsPath[] "C:\\Users\\Public\\Documents\\Aerotech\\A3200\\User Files\\myParams.prma";

if (!A3200ParameterFileOpen(paramsPath, ¶ms)) { PrintError(); goto cleanup; }

if (!A3200ParameterFileSetValue(handle, params, PARAMETERID HomeOffset, AXISINDEX 00, 50)) { PrintError(); goto cleanup; }

if (!A3200ParameterFileSetValueString(handle, params, PARAMETERID_UserStringo, , "Hello World pt. 2")) { PrintError(); goto cleanup; }
if (!A3200ParameterFileSave(params, paramsPath)) { PrintError(); goto cleanup; }

if (!A3200ParameterFileClose(params)) { PrintError(); goto cleanup; }

4. How do I read and write controller variables?

The Variable Functions can be used to retrieve and set the value of controller variables. To access a
Program Variable, the TASKID argument should be the task of the running program that defined the Program
Variable (DVAR). These functions can also be used for fieldbus variables.

double taskVars[5] = { @, 1, 2, 3, 4 };
double globalVars[5];
CHAR globalString[128];

if (!A320@VariableSetGlobalDouble(handle, 0, 23.32)) { PrintError(); goto cleanup; }
if (!A3200VariableSetTaskDoubles(handle, 0, 0, taskVars, 5)) { PrintError(); goto cleanup; }

if (!A320@VariableGetGlobalDoubles(handle, 0, globalVars, 5)) { PrintError(); goto cleanup; }

if (!A3200VariableSetValueStringByName(handle, TASKID 02, "$strtask[3]", "Hello world")) { PrintError(); goto cleanup; }
if (!A3200VariableSetValueByName(handle, @, "$global[2]", 1.23)) { PrintError(); goto cleanup; }

if (!A3200VariableGetValueStringByName(handle, 0, "$strglob[1]", globalString, 128)) { PrintError(); goto cleanup; }

if (!A3200VariableSetValueByName(handle, TASKID 01, "$testDVAR", 4.56)) { PrintError(); goto cleanup; }

5. How do I read and write Modbus variables?

The Modbus Functions are based on the old Modbus implementation and the new Fieldbus Mapping Dialog
implementation should be used (see the Fieldbus Mapping Dialog topic in the A3200 Help file) with the
A3200VariableGetValueByName() and A3200VariableSetValueByName() functions with a TASKID
argument of 0.

DOUBLE modbusOWordStatus;
DOUBLE modbusIBit;

if (!A3200VariableSetValueByName(handle, 0, "$MyModbusOWord", 32)) { PrintError(); goto cleanup; }
if (!A3200VariableGetValueByName(handle, 0, "$MyModbusOWordStatus", &modbusOWordStatus)) { PrintError(); goto cleanup; }
if (!A3200VariableGetValueByName(handle, 0, "$MyModbusIBit", &modbusIBit)) { PrintError(); goto cleanup; }

6. Is the A3200 C Library thread safe?

The A3200 C Library is not thread safe. If an application uses threading, all A3200 function calls must be
manually synchronized (with mutexes, locks, semaphores, etc.) or the controller should only be accessed by a
single thread.

7. Which A3200 C Library functions are blocking?

Unless indicated otherwise, the A3200 .NET Library methods have the same blocking behavior as their
AeroBasic equivalents. Please see the "Blocking Behavior of the Libraries” topic in the A3200
Programming Help file for more information.

If a user would like to get around the blocking behavior of a function, they can place a controller task in
Queue Mode and add the command to the task’s execution queue (see the "Queue Mode Overview” topic in
the A3200 Help file for more information). There is an example the shows how to use a task’s Queue Mode in
the A3200 Programming Help file documentation for the A3200ProgramInitializeQueue() function.

Another option is to write an AeroBasic program that contains the desired commands and use the
Program/Task Control Functions to load, start, and stop the program. The A3200ProgramRun()
function does not block. Use the A3200ProgramGetTaskState() function to check for program completion.

8. How do I modify my A3200 configuration using the A3200 C Library?

Use the Configuration Functions to modify the A3200 configuration. The changes will not be applied until
after the controller is started or reset (controller must be reset if it was already running).

A3200ConfigurationHandle configHandle = g

A3200ProgramAutomationFile myInclude = { "C:\\Users\\Public\\Documents\\Aerotech\\A3200\\User Files\\Include.pgm", PROGRAMAUTOMATIONMODE_ Include, TASKMASK None };
= { "C:\\Users\\Public\\Documents\\Aerotech\\A3200\\User Files\\Transform.pgm", PROGRAMAUTOMATIONMODE_Run, TASKMASK_02 };

A3200ProgramAutomationFile myTransform
CHAR galvoCalPath[1 = "C:\\Users\\Public\\Documents\\Aerotech\\A3200\\User Files\\MyGalvo.cal";

if (!A3200ConfigurationOpen(&configHandle)) { PrintError(); goto cleanup; }

if (!A3200ConfigurationProgramAutomationAdd(configHandle, myInclude)) { PrintError(); goto cleanup; }

if (!A320@ConfigurationProgramAutomationAdd(configHandle, myTransform)) { PrintError(); goto cleanup; }

if (!A32@0ConfigurationCalibrationFileSet(configHandle, AXISCALIBRATION_ FILETYPE_GALVO_2D, galvoCalPath)) { PrintError(); goto cleanup; }
if (!A32@@ConfigurationSave(configHandle)) { PrintError(); goto cleanup; }

if (!A3200ConfigurationClose(configHandle)) { PrintError(); goto cleanup; }

9. I can’t find the command in the A3200 C Library. How do I execute a command that isn’t part
of the API?

Users can issue commands that are not offered in the A3200 C Library by using the
A3200CommandExecute() function. Pass a string that contains one or more AeroBasic command(s)
delimited by \n (a newline) and the command(s) will be compiled and executed as immediate commands. The
returnValue argument should be NULL if the the AeroBasic string is not expected to return a value. Otherwise,
an error will occur. The Program/Task Control Functions can also be used to run AeroBasic programs.

A3200Handle handle =
DOUBLE ampTemp;

if (!A3200Connect(&handle)) { PrintError(); goto cleanup; }
if (!A3200CommandExecute(handle, TASKID ©1, "DRIVEINFO(X, DRIVEINFO AmplifierTemperature)"”, &Temp)) { PrintError(); goto cleanup; }
if (!A3200CommandExecute(handle, TASKID ©1, "ENABLE X\nLINEAR X 10\nENABLE Y\nLINEAR Y 20",)) { PrintError(); goto cleanup; }

10. How can I call an AeroBasic subroutine from within my .NET application?

Add the program that contains the subroutine to Program Automation as Download in A3200
Configuration Manager, or use the A3200ProgramLoad() function to load the .PGM to the controller. The
A3200CommandExecute() function can be used to call the subroutine from a specific task.

A3200Handle handle = 5
CHAR ProgramFilelLocation[] = "C:\\Users\\Public\\Documents\\Aerotech\\A3200\\User Files\\myProgram.pgm";

if (!A3200Connect(&handle)) { PrintError(); goto cleanup; }

if (!A3200ProgramLoad(handle, TASKID 02, ProgramFilelLocation)) { PrintError(); goto cleanup; }

if (!A3200VariableSetValueStringByName(handle, TASKID_ Library, "$strglob[@]", "myProgram.pgm")) { PrintError(); goto cleanup; }
if (!A3200VariableSetValueStringByName(handle, TASKID_ Library, "$strglob[1]", "myFunction")) { PrintError(); goto cleanup; }

if (!A3200CommandExecute(handle, TASKID 01, "FARCALL strglob[@] strglob[1]",)) { PrintError(); goto cleanup; }

An ONGOSUB can also be set up in an AeroBasic program to execute the block of code upon some event, like
a Task Error. This program containing the ONGOSUB would need to be run via the A3200ProgramLoad() then

A3200ProgramStart() functions or A3200ProgramRun() function, or added to Program Automation as Run or
RunSilent.

11. I can’t find VELOCITY ON, PVT, or their equivalent functions in the A3200 C Library. How do I
command a series of moves with velocity profiling and/or precise timing in my C application?

There are not APIs for velocity profiling or PVT motion because the A3200 libraries are not intended for
real-time motion control. Users could see between 5-10ms of latency between immediate commands and the
controller is not able to effectively plan motion to achieve velocity blending throughout a series of

commanded moves, even after a user issues A3200CommandExecute(handle, TASKID_ XX, "VELOCITY ON”,
NULL).

12. What are some best practices when using the Program/Task Control Functions?

e When possible, use .PGM files instead of .OGM files. Errors can occur when an .OGM is used
without the .PGM present.
Check return values and retrieve the error information when the functions return FALSE
Use END PROGRAM to end AeroBasic programs
o Otherwise, a program may not complete smoothly when using Buffered Run
e Use A3200ProgramGetTaskState() or A3200ProgramGetTaskStateString() to check a task’s state
before running programs in it
o For example, the A3200ProgramsStart() function should only be used when the program has
been downloaded and associated with the task and when the task state is:
ProgramComplete, ProgramReady, or ProgramPaused

e There are examples for:
o A3200ProgramBufferedRun() in the Buffered Run Queue example in the Samples directory
o A3200ProgramlnitializeQueue() in the A3200 Programming Help file documentation for the
function
o A3200ProgramRun() and A3200ProgramStopAndWait() in the Console Example in the
Samples directory

13. Can the A3200 C Library be used to control a Hexapod?

With the Hexapod files setup correctly with Program Automation, the A3200CommandExecute() function
can be used to issue Hexapod commands to do things like setup and/or activate tools and setup coordinate
systems.

The Hexapod transformations will be consuming motion commanded to the virtual axes in real-time,
regardless of the source of the commands. Point to point moves can be commanded through the API without
issue. If velocity profiling is desired, Queue Mode can be used or the A3200ProgramRun() function can
be used to run AeroBasic programs that contain the VELOCITY ON command followed by the sequence of
moves (See FAQs #11 and #12).

14. What steps are required to use a C application on a client PC to control a remote A3200 in a Remote
Server configuration?

After purchasing the Remote option, install the A3200 client-only software on the client PC and follow the
“"Remote Server and Client Installation and Configuration” A3200 Help file topic. Make sure the the programs,
calibration, and parameter files are all on the client PC. There shouldn’t be anything on the server PC
(including A3200 Program Automation). Use the A3200 and the C Library on the client PC as you normally
would and A3200 will automatically take care of communicating the information over TCP/IP.

15. How do I poll for diagnostics and status items through the A3200 C Library?

I. The Status Commands can be used to retrieve various status items and the functions work similar to
the AXISSTATUS, TASKSTATUS, and SYSTEMSTATUS AeroBasic commands. The A3200 Programming
Help file documentation for the A3200GetStatusItems() function contains an example with code to
retrieve multiple status values of a different kind at the same time.

II. The Data Collection Functions can be used to retrieve a specific set of diagnostic items for a finite or
infinite number of samples. Users can configure their data collection (samples, signals, etc.), start/stop
the data collection, check the status of their collection, and retrieve the sample points from their data
collection (data collection signals will be in counts). There are a few examples of data collections in the
A3200 Programming Help file documentation for the Data Collection Functions.

III. The A3200CommandExecute() function can be used to issue AeroBasic status commands as
immediate command strings:

A3200Handle handle = 5
DOUBLE coordinatedSpeedTarget;

if (!A3200Connect(&handle)) { PrintError(); goto cleanup; }

if (!A3200CommandExecute(handle, TASKID 01, "TASKSTATUS($taskindex, DATAITEM CoordinatedSpeedTarget)",
&coordinatedSpeedTarget)) { PrintError(); goto cleanup; }

Troubleshooting Tips:

This section contains some suggestions for troubleshooting C applications when using Visual Studio and
targeting the A3200 C Library

When I try to build my application, I am seeing linker errors:

Make sure that the full paths to A3200C.lib and A3200C64.lib are provided as Additional Dependencies in the
Project Properties:

Project Property Pages ? X
Configuration: | Debug ~ | Platform: |Win32 ~ Configuration Manager...
4 Configuration Properties Additional Dependencies C:\Users\Public\Documents\Visual Studio Projects\Project1 ~
General Ignore All Default Libraries
Debugging Ignore Specific Default Libraries
VC++ Directories Module Definition File
b/ Add Module to Assembly
4 Linker | I

Embed Managed Resource File

Lishetal | Force Symbol References
nput Delay Loaded Dils
MEﬂIfESF b -Assembly Link Resource
Debugging - &
System

Optimization

Embedded IDL
Windows Metadata
Advanced
All Options
Command Line
Manifest Tool
AML Document Generator
Browse Information
Build Events
Custom Build Step Additional Dependencies
Code Analysis Specifies additional items to add to the link command line, [i.e. kernel32.lib]

v v v v vV

Cancel Apply

When I try to build my application, I am seeing compiler errors:

Make sure that the line #include A3200.h is added to the top of any program that uses the the A3200 C
Library.

Also, confirm that the path to the include directory that contains the header files is added to the Project
Properties as Additional Include Directories:

Project] Property Pages ? *
Configuration: | Debug ~| Platform: |Win32 ~ Configuration Manager...

4 Configuration Properties .Add'rtinnal [nchdr_mrectons . C\Users\Public\Documents\Visual Studio Projects\Project1\Pr
General Additional #using Directories l - - B
Debugging . Debug Information Fermat Program Database for Edit And Continue (/Z1)

VC++ Directories | comman Language RunTime Support . . -
4 C/C++ Consume Windows Runtime Extension
GE“'E'E s . Suppress Startup Banner Yes (a;nologo)
Optimization .Wa;ning Level [Level3 yW3)
e Treat Warnings As Errors No ([/WX-)

Cods Sencration Warning Version

Languagé Diagnostics Format [Classic (/diagnostics:classic)
Precempiled Headers — —
D lSDLc.hecks _ lYes (/sdl)
R mformation Multl—proces_s_or Compilation
Advanced
All Options
Command Line
I Linker
I Manifest Tool
I XML Document Generator
I Browse Informaticn
i Build Events
b Custom Build Step Additional Include Directories
I Code Analysis Specifies one er more directories to add to the include path; separate with semi-colons if more than ene.
Py » (/I[path])

Cancel Apply

When I try to run my application, I am seeing runtime errors that say that I am missing DLLS:
Add [InstallDir]\CLibrary\bin\ and [InstallDir]\CLibrary\bin64\ to your PATH or copy all of the DLLs within the

bin and bin64 and paste them in the project’s output directory.

I followed all of the instructions in this setting and I am still having trouble compiling and running my
application:

Run one of the sample A3200 C Library applications (found in [InstallDir]\Samples\C\CLibrary). If this builds
and runs, try:

1. Copying the source from the example project and trying to run it within the broken project

2. Looking at example’s Project Properties and making sure that the broken project’s properties match any
of the bold fields (which are different values than the default)

Some A3200 C Library functions will error when passing certain values as arguments:

If it is implied that the argument is conceptually an integer, please ensure that the value does not have any
fractional part. Some examples might be arguments like (NumElements, StartIndex, NumCycles).

Changes to A3200 Configuration using the Configuration Functions are not taking effect when I connect to
the controller using the A3200Connect() function:

If the A3200 is already running, it must be reset before changes to configuration will be active. If the problem
persists, ensure that any paths passed to the Configuration Functions have double backslashes (\\). For more
information, see: https://docs.microsoft.com/en-us/cpp/c-language/escape-sequences

NOTE: Galvo calibration cannot be applied when there is not a physical galvo controller connected. Remove
any calibration using the Configuration Manager before developing/testing applications when there is not
physical hardware connected.

Sometimes A3200 C Library functions return incorrect values or intermittently fail:

If the threading is used in the application, make sure that all controller accesses are synchronized (via locks,
mutexes, semaphores, etc.) or only access the controller from a single thread.

Make sure that the A3200 C Library DLL version matches the A3200 software version being used. See the
"Building Projects Against the A3200 C Library in Visual Studio” section of this guide.

https://docs.microsoft.com/en-us/cpp/c-language/escape-sequences

Writing Custom CALLDLL Handling Functions with the A3200 C Library in Visual Studio:

The content in this section follows the “Writing Custom CALLDLL Handling Functions with the C Library” A3200
Help file topic. Visual Studio 2017 was used. The CALLDLL command can only call a function that is in a native
Win32DLL. Other DLLs or COM objection can be called from within the the Win32 DLL. Aerotech does not
support C++/CLR DLLs.

1. Create a New Project in Visual Studio. Select Visual C++ -> Empty Project

Mew Project T x

P Recent .MNET Framework 4.6.1 ~ Sort by: Default

4 |nstalled 4 . ~
i = AL A E s = i = Vist C++
E Wi nsole Application Visual C++ Type: Visual

application

Windows Desktop Application Visual C++

h. I Empty Project Visual C++

P ipt
I» Other Project Types

P Online

Mot finding what you are looki
Name: [CALLDLLHandIeq
Location: C \Public\Documents\Visual Studio Projects\,

Solution name: CALLDLLHandler

Cancel

2. Copy the contents of the [InstallDir]\CLibrary directory and paste into the project’s output directory

3. Copy the *.dll files from the bin and bin64 directories and paste them into the project’s output directory

C » Local Disk(C:) » Users » Public » Public Documents » Visual Studio Projects » CALLDLLHandler » CALLDLLHandler

MName & Date modified Type Size

include 8/28/2018 12:46 PM File folder

lib 8/28/2018 12:46 PM File folder

libEd 8/28/2018 12:46 PM File folder
|J A32Cmplr.dll 8/6/2018 10:48 AM Application extens... 4936 KB
i:| A32Cmplred.dil 8/6/2018 10:49 AM Application extens... 6,521 KB
ij A325y=.dll 8/6/2018 10:49 AM Application extens... 4426 KB
[4] A325ys64.dll 8/6/2018 10:50 AM Application extens... 4613 KB
[#] A3200C.dIl 8/6/2018 10:51 AM Application extens... 184 KB
[#] A3200C64.dlI 8/6/2018 10:51 AM Application extens... 219 KB
i:l AerUtilities.dll 2/6/2018 10:45 AM Application extens... 892 KB
|:| AerUtilitiestd.dll 8/6/2018 10:45 AM Application extens... 931 KB
[l CALLDLLHandlervexproj 8/28/2018 12:33 PM VC++ Project & KB
B CALLDLLHandlervexproj filters 8/28/2018 1233 PM VC++ Project Filte... 1KE
i3 CALLDLLHandlervoxrpraj.user 8/28/201812:35PM Per-User Project O... 1 KB
] LicenseDecoder.dll 6/20/2018 %06 AM Application extens... 12 KB
i:l LicenseDecoderfd.dll /2042018 906 AM Application extens.., 14 KB

4. Add a .c file to the project (the extension will need to be changed from .cpp to .c)

| CALLDLLHandler

u-B References

K5 External Dependencies
8y Header Files

sy Resource Files

== Source Files
Mew lterm... Add

Basting ltem... Shift+Alt+A * Class Wizard... Ctrl+Shift+X

Mew Filter Scope to This
Class... ! Mew Solution Explorer View
Resource... Cut

Copy

Rename

Properties Alt+Enter

Add Mew Item - CALLDLLHandler ? >
4 Installed Sort by: Default

4 Visual C++ i ; L o < « Visual C++

_ | I C++ File (.cpp) Visual C++ dape Newalc
Code =] i

Creates a file containing C++ source code

Ul
ATL m] Header File {.h) Visual C++

L, i: C++ Class Visual C++

Utility
Property Sheets
HLSL

Graphics

I Online

Marne: MyFunctions. c|

Location: G =W PublichDocuments\Visual Studio Projects\CALLDLLHandler\CALLDLLHandler, Browse...

Cancel

5. Create a .txt file in the project’s output directory, define the desired functions, and save with a .def
extension

) ARTULINLIES U U I S D RS MY

--[J[JII'.GLILFI' ERLEM S0, b
& CALLDLLHandlervexprd W D
] CALLDLLHandlervexprd — 3 o o
A CALLDLLHandler.vexprd File Edit Format Wiew Help
_| LicenzeDecoder.dll |LIBMRY CALLDLLHandler
|%] LicenseDecoderfd.dll EXPORTS
Bl MvDefEile.def FancyEnable @1
MYF t'l FancyDisable @2
iy MyFunctions.c

6. In the Solution Explorer, right-click on Source Files and click Add -> Existing Item... and select the *.def
file

=y Resource Files

urce Files
MyDefFile.def
MyFunctions.c

Mew ltem...

Buasting ltem... Shift+Alt+A Ctrl+Shift+X
Mew Solution Explorer View

- Cut Ctri+X

Copy Ctrl+C

Delete Del

Rename

Properties

Alt+Enter

7. Open the Project Properties and apply the following changes:
Under “General”, change Configuration Type to Dynamic Library (.dll)

I.
I1.

Under “General”, change Common Language Runtime Support to No Common Language

Runtime Support

CALLDLLHandler Property Pages

Configuration: | Debug

T X

«| Platform: |Win32

4 Configuration Properties
General

Debugging

WVC++ Directories
C/C++

Linker

Manifest Tool

XML Document Generator
Browse Information
Build Events

Custom Build Step
Code Analysis

R A A A A

V| | Configuration Manager...

Target Platform

Windows 10

Windows SDK Version 10.0.16299.0

Output Directory S(SolutionDir)S(Cenfiguration],

Intermediate Directory S(Configuration)\,

Target Mame S{ProjectMame)

Target Extension JEXE

Extensions to Delete on Clean *.cdf;*.cache™.obj;*.obj.enc™ilk™.ipdb;*.iobj;* resources ™ tib; ™ th;
Build Log File S{IntDir)5(M5BuildProjectMame).log

Platform Toolset

Visual Studio 2017 (v141)

Enable Managed Incremental Build

Configuration Type

Mo

Dynamic Library (.dil)

Use of MFC

Use Standard Windows Libraries

Character Set
Common Language Runtime Support
MET Target Framework Version

Use Multi-Byte Character Set

Mo Commeon Language Runtime Support i

Wheole Pregram Optimization

Mo Whele Program Optimization

Windows Store App Support

Mo

Common Language Runtime Support

Specifies whether this configuration supperts the Commeon Language Runtime, This is incompatible with some
other settings, e.g. runtime checks. See help for /clr family of C++ compiler switches for full list of conflicts.

OK || Cancel || Apply |

III. Under “"C/C++", add the path to the include directory (from step 2.) as an Additional Include

Directory
CALLDLLHandler Property Pages ? *
Configuration: iDehug v/ Platform: iWinSZ VI | Configuration Manager...

4 Configuration Properties

General Additional #using Directories
Debugging

it I 1 7
s Pt Additional Include Directories ? -4

4 T/C++
General {

Optimization 1
Preprocessor

Code Generation
Language
Precompiled Headers
Output Files

Browse Information
Advanced

All Options

IV.

Under “C/C++" -> “Advanced”, change Compile As to Compile as C Code (/TC)

CALLDLLHandler Property Pages

Configuration: i Debug

i3 ped

~| Platform: | Win32

~| | Configuration Manager...

v v B, AR Y e

4 Configuration Properties

General
Debugging
WZ++ Directories
C/C++
General
Optimization
Preprocessor
Code Generation
Language
Precompiled Headers
Output Files
Browse Informaticn
Advanced
All Options
Command Line
Linker
Manifest Tool
XML Document Generator
Browse Information
Build Events
Custom Build Step
Code Analysis

Calling Conventicn _ cdecl (/Gd)
Compile as C Code (/TC) w
Disable Specific Warnings
Forced Include File
Forced #using File
Show Includes Mo
Use Full Paths Ne
Ornit Default Library Name No

Internal Compiler Error Reporting

Prompt Immediately (/errorReport:prompt)

Treat Specific Warnings As Errors

Compile As
Select compile language option for .c and .cpp

files. (/TC, /TR)

[ok]| cancel || Apply |

V. Add the paths to both A3200C.lib and A3200C64.lib to Linker -> Input -> Additional
Dependencies

CALLDLLHandler Property Pages ? X

Configuration: .Debug | Platform: |Win32 | Configuration Manager... |

General ~ nal Dependenc kerneI32.Iib;user32.|ib;gdi32.|ib_'winspool.Iib;comdlgBZ.lib;advapile
Optimization o !
Preprocessor Additional Dependencies ? X
Code Generation
Language ChlUsers\Public\ Decuments\Visual Studio Projects\CALLDLLHandler\CALLDLLHandler\lib\A3200C.lib

: C:h\Users Public\ Documents\Visual Studio Projects\CALLDLLHandler\CALLDLLHandler\lib64jA3200C64
Precompiled Heade
Output Files
Browse Information
Advanced
All Opticns
Command Line < >

4 Linker
Gincal Evaluated value:
Input Ch\Users\Public\Docurments\Visual Studio Projects\CALLDLLHandler\CALLDLLHandler\lib\A3200C.lib
Manitact File CAUsers\Public\Documents\Visual Studio Projects\CALLDLLHandler\CALLDLLHandler\lib64\A3200C64
2 Ze(AdditionalDependencies)

Debugging
System

VI. Add the *.def file to Linker -> Input -> Module Definition File

Configuration: ?Debug v | Platform: Win32 v Configuration Manager...

4 Configuration Properties
General
Debugging
VC++ Directories
D C/C++
4 |inker
General
Input
Manifest File
Debugging

et

| Additional Dependencies

C:\Users\Public\Documents\Visual Studio Projects\CALLDLLHand

Ignore All Default Libraries

Ignore Specific Default Libraries

Add Moule to Assembly

Module Definition File

? X

Embed Managed Resource File

| Force Symbol References

MyDefFiIe.deﬂ

Delay Loaded Dlls

Assembly Link Resource

MyDefFile.def

Macros>>

8. Add includes and function prototypes to the top of the .c Source File

#tinclude <stdio.h>

#tinclude <A3200.h>

ErrorData _stdcall FancyEnable(A3200Handle handle, TASKID taskId);

ErrorData _stdcall FancyDisable(A3200Handle handle, TASKID taskId);

9. Define the functions and use the Generic Callback Functions to handle the passing of data
10. Build the application and address any compiler errors

The function definitions:

ErrorData _stdcall FancyEnable(A3200Handle handle, TASKID taskId)
{

ErrorData errorData = ErrorData_NoError;

AXISMASK axisMask;

LPSTR returnedString = "";

DOUBLE homeAxes;

if (!A3200CallbackArgsGetInteger(handle, taskId, 2, (INT *)&axisMask))

{
errorData = A3200GetLastError();

goto cleanup;

}

if (!'A3200CallbackArgsGetDouble(handle, taskId, 3, (DOUBLE *)&homeAxes))
{

errorData = A3200GetLastError();
goto cleanup;

if (!A3200MotionEnable(handle, TASKID Library, axisMask))
{

errorData = A3200GetLastError();
goto cleanup;

if (homeAxes)

{
if (!A3200MotionHome(handle, TASKID Library, axisMask))

{

errorData = A3200GetLastError();
goto cleanup;

}

returnedString = "Your axes have been enabled and homed";

returnedString = "Your axes have been enabled";

cleanup:
A3200CallbackReturnString(handle, taskId, returnedString, errorData, 0, 0);
return A3200GetLastError();

}

ErrorData _stdcall FancyDisable(A3200Handle handle, TASKID taskId)
{

ErrorData errorData = ErrorData_NoError;

AXISMASK axisMask;

DOUBLE globals[5] = { @, @0, @, 0, 0 };

DOUBLE clearGlobals;

if (!'A3200CallbackArgsGetInteger(handle, taskId, 2, (INT *)&axisMask))

{
errorData = A3200GetLastError();

goto cleanup;

if (!A3200CallbackArgsGetDouble(handle, taskId, 3, (DOUBLE *)&clearGlobals))
{

errorData = A3200GetLastError();
goto cleanup;

if (!A3200MotionDisable(handle, TASKID_ Library, axisMask))
{

// Enable all of the axes that are specified in the axis mask.
errorData = A3200GetLastError();
goto cleanup;

}

if (clearGlobals)
{

}

A3200VariableSetGlobalDoubles(handle, taskId, globals, 5);

cleanup:
A3200CallbackReturnVoid(handle, taskId, errorData, 0, 0);
return A3200GetLastError();

11. Copy the DLL that is output when building the project and paste it in the same directory as the
calling AeroBasic program. This will allow users to omit the path when using the CALLDLL command and
only the *.dll filename is required

An example of a short AeroBasic program that calls the functions:

$strglob[@] = CALLDLL "CALLDLLHandler.dll", "FancyEnable", 3, 1
$global[@] = MSGBOX DF_MSGBOX_OKONLY + DF_ICON_INFORMATION, $strglob[@]
CALLDLL "CALLDLLHandler.dl1l", "FancyDisable", 3, 1

END PROGRAM

