

Building Projects Against the A3200 C Library in Visual Studio:

Sample Projects and Code Snippets:

Using the A3200 C Library:

Frequently Asked Questions:

Will my C application work with a version of the A3200 software that is different than the version of the

A3200 C Library that I used to build my application?

What is the recommended approach for handling errors when using the A3200 C Library?

How do I edit controller parameters?

How do I read and write controller variables?

How do I read and write Modbus variables?

Is the A3200 C Library thread safe?

Which A3200 C Library functions are blocking?

How do I modify my A3200 configuration using the A3200 C Library?

I can’t find the ______ command in the A3200 C Library. How do I execute a command that isn’t part of

the API?

How can I call an AeroBasic subroutine from within my .NET application?

I can’t find VELOCITY ON, PVT, or their equivalent functions in the A3200 C Library. How do I command a

series of moves with velocity profiling and/or precise timing in my C application?

What are some best practices when using the Program/Task Control Functions?

Can the A3200 C Library be used to control a Hexapod?

What steps are required to use a C application on a client PC to control a remote A3200 in a Remote

Server configuration?

How do I poll for diagnostics and status items through the A3200 C Library?

Troubleshooting Tips:

When I try to build my application, I am seeing linker errors:

When I try to build my application, I am seeing compiler errors:

When I try to run my application, I am seeing runtime errors that say that I am missing DLLs:

I followed all of the instructions in this setting and I am still having trouble compiling and running my

application:

Some A3200 C Library functions will error when passing certain values as arguments:

Changes to A3200 Configuration using the Configuration Functions are not taking effect when I connect to

the controller using the A3200Connect() function:

Sometimes A3200 C Library functions return incorrect values or intermittently fail:

Writing Custom CALLDLL Handling Functions with the A3200 C Library in Visual Studio:

A3200 C Library Getting Started Guide

Building Projects Against the A3200 C Library in Visual Studio:

1. The version of the library DLLs must be in sync with each other and with the version of the A3200

controller installed

● The [InstallDir]\CLibrary\bin\ and [InstallDir]\CLibrary\bin64\ directories must be added to the PATH or

their contents must be copied and pasted into the Output Directory of any C application that uses the

A3200 C Library

● The linker must be setup to find the A3200 C Library (A3200C.lib and A3200C64.lib as Additional

Dependencies)

● The [InstallDir]\CLibrary\include\ directory must be added as an Additional Include Directory

Sample Projects and Code Snippets:

● There are multiple sample projects located in the Samples directory of the installation directory (e.g.

C:\Program Files\Aerotech\A3200\Samples)

○ These are also useful for determining the proper Visual Studio project properties

● There are example usages of some of the functions in their A3200 Programming Help file topics

● The FAQs and example application in this guide are a good starting point

Using the A3200 C Library:

● Add the line “#include “A3200.h” to use the A3200 C Library

● Unless indicated otherwise, the functions in the A3200 C Library are blocking (the next program line is

not executed until the current one completes)

○ Library methods that are wrappers for AeroBasic commands have the same blocking behavior as

the AeroBasic command

● The A3200 C Library is not meant for real-time motion control and any commands issued through the

library will have a latency of anywhere from 5-10ms

● Commands that are executed from multiple threads must be synchronized using something like locks,

mutexes, semaphores, etc.

● A3200 C Library functions will return FALSE if an error occurs

○ Call A3200GetLastError() to get more information on the error

Frequently Asked Questions:

1. Will my C application work with a version of the A3200 software that is different than the version of the

A3200 C Library that I used to build my application?

Small differences in version might mean that your application code is source-level compatible between the

different versions of the A3200 C Library, but users will still need to rebuild their application against

the version of the A3200 C Library that matches the A3200 controller version that they intend to

use with their application. Follow this procedure when updating C applications to function properly with a

different controller version:

I. Check the release notes to see what has changed between versions of the A3200 C Library and if

upgrading a project from 2.x, please see the “Upgrading Programs From 2.x” topic in the A3200

Programming Help file, as well as any “Related Topics”

II. If there have been updates to a feature that was used in or application, update your source code

to use the correct syntax and to use the features of the controller properly

III. Copy all of the files in the intend target A3200 controller versions’ [InstallDir]\C\bin and

[InstallDir]\C\bin64 directories and paste them in the application’s Output Directory

IV. Add the [InstallDir]\CLibrary\include\ directory as an Additional Include Directory

V. Add A3200C.lib and A3200C64.lib as Additional Dependencies in the Linker properties

VI. Rebuild the application

2. What is the recommended approach for handling errors when using the A3200 C Library?

There is not one correct approach to handling errors that occur when using the A3200 C Library. Most all of

the functions in the A3200 C Library will return FALSE on error and the A3200GetLastError() or

A3200GetLastErrorString() function can be used to retrieve the last error that occured. The C applications in

the Samples directory setup an error printing function that is called when any of the A3200 C Library function

calls errors (cleanup code is also used and is shown below).

// This function will print whatever the latest error was
void PrintError();

int main(int argc, char **argv)
{

// Handle to give access to A3200
A3200Handle handle = NULL;

printf("Connecting to A3200. Initializing if necessary.\n");
if (!A3200Connect(&handle)) { PrintError(); goto cleanup; }

 // application code

cleanup:

if(handle != NULL) {
if(!A3200MotionDisable(handle, TASKID_Library, axisMask)) { PrintError(); }
if(!A3200Disconnect(handle)) { PrintError(); }

}

return 0;
}

void PrintError() {

CHAR data[1024];
A3200GetLastErrorString(data, 1024);
printf("Error : %s\n", data);

}

3. How do I edit controller parameters?

The Parameter Functions allow users to manipulate the active controller parameters as well as the

parameters in an A3200 parameter file. The controller will revert back to the parameter values in the active

parameter files’ on controller reset.

Edit parameters on the SMC:

if (!A3200ParameterSetValue(handle, PARAMETERID_HomeOffset, AXISINDEX_00, 75)) { PrintError(); goto cleanup; }
if (!A3200ParameterSetValueString(handle, PARAMETERID_UserString0, NULL, "Hello World")) { PrintError(); goto cleanup; }

Open, manipulate, and save a parameter file:

A3200ParameterFile params = NULL;
CHAR paramsPath[MAX_PATH] = "C:\\Users\\Public\\Documents\\Aerotech\\A3200\\User Files\\myParams.prma";

if (!A3200ParameterFileOpen(paramsPath, ¶ms)) { PrintError(); goto cleanup; }
if (!A3200ParameterFileSetValue(handle, params, PARAMETERID_HomeOffset, AXISINDEX_00, 50)) { PrintError(); goto cleanup; }
if (!A3200ParameterFileSetValueString(handle, params, PARAMETERID_UserString0, NULL, "Hello World pt. 2")) { PrintError(); goto cleanup; }
if (!A3200ParameterFileSave(params, paramsPath)) { PrintError(); goto cleanup; }
if (!A3200ParameterFileClose(params)) { PrintError(); goto cleanup; }

4. How do I read and write controller variables?

The Variable Functions can be used to retrieve and set the value of controller variables. To access a

Program Variable, the TASKID argument should be the task of the running program that defined the Program

Variable (DVAR). These functions can also be used for fieldbus variables.

double taskVars[5] = { 0, 1, 2, 3, 4 };
double globalVars[5];
CHAR globalString[128];

if (!A3200VariableSetGlobalDouble(handle, 0, 23.32)) { PrintError(); goto cleanup; }
if (!A3200VariableSetTaskDoubles(handle, 0, 0, taskVars, 5)) { PrintError(); goto cleanup; }
if (!A3200VariableGetGlobalDoubles(handle, 0, globalVars, 5)) { PrintError(); goto cleanup; }
if (!A3200VariableSetValueStringByName(handle, TASKID_02, "$strtask[3]", "Hello world")) { PrintError(); goto cleanup; }
if (!A3200VariableSetValueByName(handle, 0, "$global[2]", 1.23)) { PrintError(); goto cleanup; }
if (!A3200VariableGetValueStringByName(handle, 0, "$strglob[1]", globalString, 128)) { PrintError(); goto cleanup; }
if (!A3200VariableSetValueByName(handle, TASKID_01, "$testDVAR", 4.56)) { PrintError(); goto cleanup; }

5. How do I read and write Modbus variables?

The Modbus Functions are based on the old Modbus implementation and the new Fieldbus Mapping Dialog

implementation should be used (see the Fieldbus Mapping Dialog topic in the A3200 Help file) with the

A3200VariableGetValueByName() and A3200VariableSetValueByName() functions with a TASKID

argument of 0.

DOUBLE modbusOWordStatus;
DOUBLE modbusIBit;

if (!A3200VariableSetValueByName(handle, 0, "$MyModbusOWord", 32)) { PrintError(); goto cleanup; }
if (!A3200VariableGetValueByName(handle, 0, "$MyModbusOWordStatus", &modbusOWordStatus)) { PrintError(); goto cleanup; }
if (!A3200VariableGetValueByName(handle, 0, "$MyModbusIBit", &modbusIBit)) { PrintError(); goto cleanup; }

6. Is the A3200 C Library thread safe?

The A3200 C Library is not thread safe. If an application uses threading, all A3200 function calls must be

manually synchronized (with mutexes, locks, semaphores, etc.) or the controller should only be accessed by a

single thread.

7. Which A3200 C Library functions are blocking?

Unless indicated otherwise, the A3200 .NET Library methods have the same blocking behavior as their

AeroBasic equivalents. Please see the “Blocking Behavior of the Libraries” topic in the A3200

Programming Help file for more information.

If a user would like to get around the blocking behavior of a function, they can place a controller task in

Queue Mode and add the command to the task’s execution queue (see the “Queue Mode Overview” topic in

the A3200 Help file for more information). There is an example the shows how to use a task’s Queue Mode in

the A3200 Programming Help file documentation for the A3200ProgramInitializeQueue() function.

Another option is to write an AeroBasic program that contains the desired commands and use the

Program/Task Control Functions to load, start, and stop the program. The A3200ProgramRun()

function does not block. Use the A3200ProgramGetTaskState() function to check for program completion.

8. How do I modify my A3200 configuration using the A3200 C Library?

Use the Configuration Functions to modify the A3200 configuration. The changes will not be applied until

after the controller is started or reset (controller must be reset if it was already running).

A3200ConfigurationHandle configHandle = NULL;

A3200ProgramAutomationFile myInclude = { "C:\\Users\\Public\\Documents\\Aerotech\\A3200\\User Files\\Include.pgm", PROGRAMAUTOMATIONMODE_Include, TASKMASK_None };
A3200ProgramAutomationFile myTransform = { "C:\\Users\\Public\\Documents\\Aerotech\\A3200\\User Files\\Transform.pgm", PROGRAMAUTOMATIONMODE_Run, TASKMASK_02 };

CHAR galvoCalPath[MAX_PATH] = "C:\\Users\\Public\\Documents\\Aerotech\\A3200\\User Files\\MyGalvo.cal";

if (!A3200ConfigurationOpen(&configHandle)) { PrintError(); goto cleanup; }
if (!A3200ConfigurationProgramAutomationAdd(configHandle, myInclude)) { PrintError(); goto cleanup; }
if (!A3200ConfigurationProgramAutomationAdd(configHandle, myTransform)) { PrintError(); goto cleanup; }
if (!A3200ConfigurationCalibrationFileSet(configHandle, AXISCALIBRATION_FILETYPE_GALVO_2D, galvoCalPath)) { PrintError(); goto cleanup; }
if (!A3200ConfigurationSave(configHandle)) { PrintError(); goto cleanup; }
if (!A3200ConfigurationClose(configHandle)) { PrintError(); goto cleanup; }

9. I can’t find the ______ command in the A3200 C Library. How do I execute a command that isn’t part

of the API?

Users can issue commands that are not offered in the A3200 C Library by using the

A3200CommandExecute() function. Pass a string that contains one or more AeroBasic command(s)

delimited by \n (a newline) and the command(s) will be compiled and executed as immediate commands. The

returnValue argument should be NULL if the the AeroBasic string is not expected to return a value. Otherwise,

an error will occur. The Program/Task Control Functions can also be used to run AeroBasic programs.

A3200Handle handle = NULL;
DOUBLE ampTemp;

if (!A3200Connect(&handle)) { PrintError(); goto cleanup; }
if (!A3200CommandExecute(handle, TASKID_01, "DRIVEINFO(X, DRIVEINFO_AmplifierTemperature)", &Temp)) { PrintError(); goto cleanup; }
if (!A3200CommandExecute(handle, TASKID_01, "ENABLE X\nLINEAR X 10\nENABLE Y\nLINEAR Y 20", NULL)) { PrintError(); goto cleanup; }

10. How can I call an AeroBasic subroutine from within my .NET application?

Add the program that contains the subroutine to Program Automation as Download in A3200

Configuration Manager, or use the A3200ProgramLoad() function to load the .PGM to the controller. The

A3200CommandExecute() function can be used to call the subroutine from a specific task.

A3200Handle handle = NULL;
CHAR ProgramFileLocation[MAX_PATH] = "C:\\Users\\Public\\Documents\\Aerotech\\A3200\\User Files\\myProgram.pgm";

if (!A3200Connect(&handle)) { PrintError(); goto cleanup; }
if (!A3200ProgramLoad(handle, TASKID_02, ProgramFileLocation)) { PrintError(); goto cleanup; }
if (!A3200VariableSetValueStringByName(handle, TASKID_Library, "$strglob[0]", "myProgram.pgm")) { PrintError(); goto cleanup; }
if (!A3200VariableSetValueStringByName(handle, TASKID_Library, "$strglob[1]", "myFunction")) { PrintError(); goto cleanup; }
if (!A3200CommandExecute(handle, TASKID_01, "FARCALL strglob[0] strglob[1]", NULL)) { PrintError(); goto cleanup; }

An ONGOSUB can also be set up in an AeroBasic program to execute the block of code upon some event, like

a Task Error. This program containing the ONGOSUB would need to be run via the A3200ProgramLoad() then

A3200ProgramStart() functions or A3200ProgramRun() function, or added to Program Automation as Run or

RunSilent.

11. I can’t find VELOCITY ON, PVT, or their equivalent functions in the A3200 C Library. How do I

command a series of moves with velocity profiling and/or precise timing in my C application?

There are not APIs for velocity profiling or PVT motion because the A3200 libraries are not intended for

real-time motion control. Users could see between 5-10ms of latency between immediate commands and the

controller is not able to effectively plan motion to achieve velocity blending throughout a series of

commanded moves, even after a user issues A3200CommandExecute(handle, TASKID_XX, “VELOCITY ON”,

NULL).

12. What are some best practices when using the Program/Task Control Functions?

● When possible, use .PGM files instead of .OGM files. Errors can occur when an .OGM is used

without the .PGM present.

● Check return values and retrieve the error information when the functions return FALSE

● Use END PROGRAM to end AeroBasic programs

○ Otherwise, a program may not complete smoothly when using Buffered Run

● Use A3200ProgramGetTaskState() or A3200ProgramGetTaskStateString() to check a task’s state

before running programs in it

○ For example, the A3200ProgramStart() function should only be used when the program has

been downloaded and associated with the task and when the task state is:

ProgramComplete, ProgramReady, or ProgramPaused

● There are examples for:

○ A3200ProgramBufferedRun() in the Buffered Run Queue example in the Samples directory

○ A3200ProgramInitializeQueue() in the A3200 Programming Help file documentation for the

function

○ A3200ProgramRun() and A3200ProgramStopAndWait() in the Console Example in the

Samples directory

13. Can the A3200 C Library be used to control a Hexapod?

With the Hexapod files setup correctly with Program Automation, the A3200CommandExecute() function

can be used to issue Hexapod commands to do things like setup and/or activate tools and setup coordinate

systems.

The Hexapod transformations will be consuming motion commanded to the virtual axes in real-time,

regardless of the source of the commands. Point to point moves can be commanded through the API without

issue. If velocity profiling is desired, Queue Mode can be used or the A3200ProgramRun() function can

be used to run AeroBasic programs that contain the VELOCITY ON command followed by the sequence of

moves (See FAQs #11 and #12).

14. What steps are required to use a C application on a client PC to control a remote A3200 in a Remote

Server configuration?

After purchasing the Remote option, install the A3200 client-only software on the client PC and follow the

“Remote Server and Client Installation and Configuration” A3200 Help file topic. Make sure the the programs,

calibration, and parameter files are all on the client PC. There shouldn’t be anything on the server PC

(including A3200 Program Automation). Use the A3200 and the C Library on the client PC as you normally

would and A3200 will automatically take care of communicating the information over TCP/IP.

15. How do I poll for diagnostics and status items through the A3200 C Library?

I. The Status Commands can be used to retrieve various status items and the functions work similar to

the AXISSTATUS, TASKSTATUS, and SYSTEMSTATUS AeroBasic commands. The A3200 Programming

Help file documentation for the A3200GetStatusItems() function contains an example with code to

retrieve multiple status values of a different kind at the same time.

II. The Data Collection Functions can be used to retrieve a specific set of diagnostic items for a finite or

infinite number of samples. Users can configure their data collection (samples, signals, etc.), start/stop

the data collection, check the status of their collection, and retrieve the sample points from their data

collection (data collection signals will be in counts). There are a few examples of data collections in the

A3200 Programming Help file documentation for the Data Collection Functions.

III. The A3200CommandExecute() function can be used to issue AeroBasic status commands as

immediate command strings:

A3200Handle handle = NULL;
DOUBLE coordinatedSpeedTarget;

if (!A3200Connect(&handle)) { PrintError(); goto cleanup; }
if (!A3200CommandExecute(handle, TASKID_01, "TASKSTATUS($taskindex, DATAITEM_CoordinatedSpeedTarget)",
&coordinatedSpeedTarget)) { PrintError(); goto cleanup; }

Troubleshooting Tips:

This section contains some suggestions for troubleshooting C applications when using Visual Studio and

targeting the A3200 C Library

When I try to build my application, I am seeing linker errors:

Make sure that the full paths to A3200C.lib and A3200C64.lib are provided as Additional Dependencies in the

Project Properties:

When I try to build my application, I am seeing compiler errors:

Make sure that the line #include A3200.h is added to the top of any program that uses the the A3200 C

Library.

Also, confirm that the path to the include directory that contains the header files is added to the Project

Properties as Additional Include Directories:

When I try to run my application, I am seeing runtime errors that say that I am missing DLLs:

Add [InstallDir]\CLibrary\bin\ and [InstallDir]\CLibrary\bin64\ to your PATH or copy all of the DLLs within the

bin and bin64 and paste them in the project’s output directory.

I followed all of the instructions in this setting and I am still having trouble compiling and running my

application:

Run one of the sample A3200 C Library applications (found in [InstallDir]\Samples\C\CLibrary). If this builds

and runs, try:

1. Copying the source from the example project and trying to run it within the broken project

2. Looking at example’s Project Properties and making sure that the broken project’s properties match any

of the bold fields (which are different values than the default)

Some A3200 C Library functions will error when passing certain values as arguments:

If it is implied that the argument is conceptually an integer, please ensure that the value does not have any

fractional part. Some examples might be arguments like (NumElements, StartIndex, NumCycles).

Changes to A3200 Configuration using the Configuration Functions are not taking effect when I connect to

the controller using the A3200Connect() function:

If the A3200 is already running, it must be reset before changes to configuration will be active. If the problem

persists, ensure that any paths passed to the Configuration Functions have double backslashes (\\). For more

information, see: https://docs.microsoft.com/en-us/cpp/c-language/escape-sequences

NOTE: Galvo calibration cannot be applied when there is not a physical galvo controller connected. Remove

any calibration using the Configuration Manager before developing/testing applications when there is not

physical hardware connected.

Sometimes A3200 C Library functions return incorrect values or intermittently fail:

If the threading is used in the application, make sure that all controller accesses are synchronized (via locks,

mutexes, semaphores, etc.) or only access the controller from a single thread.

Make sure that the A3200 C Library DLL version matches the A3200 software version being used. See the

“Building Projects Against the A3200 C Library in Visual Studio” section of this guide.

https://docs.microsoft.com/en-us/cpp/c-language/escape-sequences

Writing Custom CALLDLL Handling Functions with the A3200 C Library in Visual Studio:

The content in this section follows the “Writing Custom CALLDLL Handling Functions with the C Library” A3200

Help file topic. Visual Studio 2017 was used. The CALLDLL command can only call a function that is in a native

Win32DLL. Other DLLs or COM objection can be called from within the the Win32 DLL. Aerotech does not

support C++/CLR DLLs.

1. Create a New Project in Visual Studio. Select Visual C++ -> Empty Project

2. Copy the contents of the [InstallDir]\CLibrary directory and paste into the project’s output directory

3. Copy the *.dll files from the bin and bin64 directories and paste them into the project’s output directory

4. Add a .c file to the project (the extension will need to be changed from .cpp to .c)

5. Create a .txt file in the project’s output directory, define the desired functions, and save with a .def

extension

6. In the Solution Explorer, right-click on Source Files and click Add -> Existing Item… and select the *.def

file

7. Open the Project Properties and apply the following changes:

I. Under “General”, change Configuration Type to Dynamic Library (.dll)

II. Under “General”, change Common Language Runtime Support to No Common Language

Runtime Support

III. Under “C/C++”, add the path to the include directory (from step 2.) as an Additional Include

Directory

IV. Under “C/C++” -> “Advanced”, change Compile As to Compile as C Code (/TC)

V. Add the paths to both A3200C.lib and A3200C64.lib to Linker -> Input -> Additional

Dependencies

VI. Add the *.def file to Linker -> Input -> Module Definition File

8. Add includes and function prototypes to the top of the .c Source File

#include <stdio.h>

#include <A3200.h>

ErrorData _stdcall FancyEnable(A3200Handle handle, TASKID taskId);
ErrorData _stdcall FancyDisable(A3200Handle handle, TASKID taskId);

9. Define the functions and use the Generic Callback Functions to handle the passing of data

10. Build the application and address any compiler errors

The function definitions:

ErrorData _stdcall FancyEnable(A3200Handle handle, TASKID taskId)
{

ErrorData errorData = ErrorData_NoError;
AXISMASK axisMask;
LPSTR returnedString = "";
DOUBLE homeAxes;

if (!A3200CallbackArgsGetInteger(handle, taskId, 2, (INT *)&axisMask))
{

errorData = A3200GetLastError();
goto cleanup;

}

if (!A3200CallbackArgsGetDouble(handle, taskId, 3, (DOUBLE *)&homeAxes))
{

errorData = A3200GetLastError();
goto cleanup;

}

if (!A3200MotionEnable(handle, TASKID_Library, axisMask))
{

// Enable all of the axes that are specified in the axis mask.
errorData = A3200GetLastError();

goto cleanup;
}

//if true, home the axes
if (homeAxes)
{

if (!A3200MotionHome(handle, TASKID_Library, axisMask))
{

// Enable all of the axes that are specified in the axis mask.
errorData = A3200GetLastError();
goto cleanup;

}
returnedString = "Your axes have been enabled and homed";

}
else
{

returnedString = "Your axes have been enabled";
}

cleanup:
A3200CallbackReturnString(handle, taskId, returnedString, errorData, 0, 0);
return A3200GetLastError();

}

ErrorData _stdcall FancyDisable(A3200Handle handle, TASKID taskId)
{

ErrorData errorData = ErrorData_NoError;
AXISMASK axisMask;
DOUBLE globals[5] = { 0, 0, 0, 0, 0 };
DOUBLE clearGlobals;

if (!A3200CallbackArgsGetInteger(handle, taskId, 2, (INT *)&axisMask))
{

errorData = A3200GetLastError();
goto cleanup;

}
if (!A3200CallbackArgsGetDouble(handle, taskId, 3, (DOUBLE *)&clearGlobals))
{

errorData = A3200GetLastError();
goto cleanup;

}

if (!A3200MotionDisable(handle, TASKID_Library, axisMask))
{

// Enable all of the axes that are specified in the axis mask.
errorData = A3200GetLastError();
goto cleanup;

}

if (clearGlobals)
{

A3200VariableSetGlobalDoubles(handle, taskId, globals, 5);
}

cleanup:

A3200CallbackReturnVoid(handle, taskId, errorData, 0, 0);
return A3200GetLastError();

}

11. Copy the DLL that is output when building the project and paste it in the same directory as the

calling AeroBasic program. This will allow users to omit the path when using the CALLDLL command and

only the *.dll filename is required

An example of a short AeroBasic program that calls the functions:

$strglob[0] = CALLDLL "CALLDLLHandler.dll", "FancyEnable", 3, 1
$global[0] = MSGBOX DF_MSGBOX_OKONLY + DF_ICON_INFORMATION, $strglob[0]
CALLDLL "CALLDLLHandler.dll", "FancyDisable", 3, 1
END PROGRAM

